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Abstract. The effectiveness of vaccinations initiated after the onset of an
infectious epidemic (post-outbreak vaccinations or POV) was retrospectively
explored by modeling: 1) the days required by the infective agent to reproduce
(replication cycle or RC), 2) the time required by the susceptible population
to become protected after POV 3) the number, time and location of cases,
4) the Euclidean distance between the spatial units of analysis, and 5) the
spatial environment where the epidemic occurred. The spatial epidemic model
is composed of differential equations and used geo-coded data (Euclidean dis-
tances between county centroids). The epidemic transmission was assumed to
be influenced by the inter-county (Euclidean) distance.
We used geo-temporal data on Foot-and-Mouth Disease (FMD) dispersion,
based on the 2001 FMD epidemic that occurred in Uruguay, to evaluate: 1)
vaccine potency, and 2) the time when a POV begins. Two vaccine types
(“regular” and “high-potency”, assumed to induce protective antibody titers
within 7.1 or 3 days, repectively) and 4 POV starting times (5, 8, 12 and 15
post-outbreak days).
Findings support the hypothesis that the time available to achieve effective
POV against FMD is brief. Reductions in epidemic size were marginal when
POV began at or after the third RC. Because, in this scenario, the earliest
time protective antibody levels could be achieved was either 8 days (high-
potency vaccine) or 12 days post-outbreak (regular vaccine), the earliest time
average susceptible farms may become protected is the end of the third (or
fourth) RC, time at which a 3-digit epidemic size is likely to occur in FMD
epidemics. Because this analysis assumed optimal conditions unlikely to be
observed in all epidemics, the actual critical time to implement succesful POV
may be shorter. This approach has the potential of being used to assess POV’s
cost-benefit ratios.

1. Introduction

Identification of the critical time available to choose and implement control
measures, once an epidemic outbreak occurs, is a classic epidemiological problem
[36]. Scientifically plausible and logistically feasible guidelines need to be based
on historical data embedded within context-specific scenarios. Because the geo-
graphical features impact the spread of an epidemic, geo-temporal data of actual
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epidemics that occurred in the past are needed to validate the guidelines. Although
these data cannot prove any hypothesis, retrospective analysis of geo-temporal epi-
demic data can facilitate improving the estimate of the initial time window to start
vaccinating.

Epidemic dispersal of rapidly disseminating infectious diseases is influenced by
local factors, which tend to be discontinuous. For instance, farm, animal and road
densities are distributed over space following non-normal/non-random distributions
[38] and can facilitate (or hinder) epidemic dispersal in magnitudes and relation-
ships rarely known before an epidemic breaks out.

Geographic Information Systems (GIS) facilitates the analysis of geo-temporal
epidemic data on real time. Integrating these data with biological concepts (such as
the time required by the infecting agent to reproduce or replication cycle) can help
develop analytical methods to give real time estimates for the costs and benefits of
alternative control policies [37, 38].

In previous work, the 2001 Foot-and-Mouth Disease (FMD) epidemic was mod-
eled to estimate relevant parameters that assessed the effects of interventions [11].
Epidemic dispersal was modeled to depend on the distance between counties (proxy
variable for connectivity) with transmission rates decaying exponentially fast with
inter-county (Euclidean) distance. That model considered that interventions (i.e.,
animal movement ban) resulted in decreases in the average transmission rate. That
study also modeled the mass vaccination program via two parameters: the rate
at which farms were vaccinated and the rate at which vaccinated farms reached
protective antibody levels. Chowell et al. [11] showed that a non-spatial model
(based on the homogeneous mixing assumption) was not able to capture the initial
take-off of the epidemic whereas the spatial model with inter-county (Euclidean)
distance dependent transmission rate (as defined in Methods) gave a significantly
better fit to the cumulative number of cases (outbreaks). However, that study did
not explore the (sensitivity) impact of timely implementation of a mass vaccination
campaign, and of the benefits of using a high potency vaccine.

Determining the time within which post-outbreak vaccinations (POV) should
occur in order to become successful is a question of major epidemiological relevance.
We use the spatial model, calibrated using data from the 2001 Uruguayan FMD
epidemic [11] to evaluate the effects of POV on the final epidemic size. This infor-
mation could help policy makers by guiding studies where the costs of emergency
vaccinations are compared to measurable benefits (i.e., a reduction in total epidemic
size). In our study, we considered a 30% reduction in epidemic size attributed to
emergency vaccinations as a minimal measure of acceptable benefit. We assess two
types of vaccines: a “regular” and a “high-potency” vaccine (assumed to induce
protective antibody titers within 7.1 or 3 days, respectively), and 4 post-outbreak
vaccination (POV) starting times (5, 8, 12 and 15 post-outbreak days or pod), in-
terventions investigated in the context of the 2001 Uruguayan FMD epidemic.

The replication cycle of the FMD virus (FMDV) is approximately 3 days long
[1]. High-potency vaccines against FMD induce protective titers of antibodies
within approximately 3 days [14]. This disease did not exist in Uruguay in the
previous decade and the index case was reported at farm level (i.e., early on in
the epidemic progression). The scenario provided an opportunity to observe this
epidemic over time and space and generate data that was used to evaluate the an-
alytical model here described.
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Our study focused on determining the time available to implement post-outbreak
vaccinations that result in significant reductions of epidemic size (i.e., ≥ 30%) and
estimating how effective the use of vaccines of different potency could lengthen this
time.

2. Brief overview of FMD

FMD is a highly infectious illness of livestock with potential devastating conse-
quences. The etiological agents of FMD is an aphthovirus that affects cloven-hoofed
animals such as pigs, cattle, and sheep. Infected animals shed large amounts of the
virus through the mouth and nose [44]. The virus can survive in objects such as
shoes, clothes, or vehicle tires. The wind can carry the virus long distances [22, 44].
Recurrent FMD outbreaks have occurred in several regions of the world. In South
America, FMD was first recorded in Argentina, Uruguay, and Brazil around 1870 as
a result of the introduction of cattle from Europe during the early colonization days
[40]. South America has reported recurring outbreaks of FMD, albeit the number
of clinical FMD cases in that region has decreased considerably since the signing of
the Hemispheric Plan for the Eradication of Foot-and-Mouth Disease (PHEFA) in
1987 [13].

The transmission dynamics of FMD involve immunological, epidemiological,
geographical, and sociological factors. The average incubation period for FMD has
been reported to be 3-6 days with a maximum of 14 days [24, 25, 42]. Latent
animals progress to an infectious state that lasts for about 8 days. They are typ-
ically asymptomatic during the first 5 days of the infectious period [29] and then
asymptomatic and infectious [50]. Hence, there is a small window (3 − 5 days)
to detect and remove or isolate the infected animals from the rest. Animals that
recover do so but with reduced weight and a diminished productivity [19] .

The transmission dynamics of FMD is tied in to geographical and sociological
factors that are difficult to separate and/or quantify. FMD transmission between
adjacent farms has been documented [29, 19, 28]. Long distance transmission
through routes that include daily milk collection routes, cattle transportation, ani-
mal movement, or cattle relocation, etc. are not only possible but extremely likely
[41, 4].

No models that include explicit transmission mechanisms (cause and effect),
that is, deterministic models, have been able to incorporate all possible transmis-
sion routes effectively. The agent-based model known as EpiSims [17] provides an
example of the cost and magnitude of validating a detailed model and has increased
our understanding of the limitations of simple models [9]. Simple deterministic
models can often yield useful insights, generate intriguing hypotheses, and guide
future research [3, 7] and their analyses can be used to roughly evaluate the validity
of control and intervention measures. Models that incorporate the immunological,
epidemiological, sociological, and geographical dependent factors for FMD would
be extremely complex. Their validation would require knowledge of a large number
of parameters, their distributions, and large amounts of data. The information
required would include knowledge of the rates of movements of key individuals,
human and animal traffic between farms, lags in reporting, impact of holidays,
highly heterogeneous contact structures (between susceptible hosts, “vectors”, and
infected hosts), geography as well as immunological (variability in susceptibility)
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and epidemiological factors. Prior work [36, 37] provides rough quantitative esti-
mates of the importance of geographical factors on the rate of FMD spread. It was
shown that intervention response times depended strongly on the spatial (regions)
distribution of farms.

The cost of FMD epidemics can be high. More than four million animals were
destroyed during the 2001 FMD epidemic in Great Britain [16] and the exportation
of animal goods was cancelled for roughly a year. During the 2001 FMD epidemic
in Great Britain, two teams of researchers developed highly refined models to aid
in the decision-making process [29, 19] and concluded that massive culling was the
best strategy to control the ongoing FMD epidemic. Their conclusions relied on
models that incorporated data on the location of farms, farm animal density, and
measures of animal heterogeneity within farms. Longitudinal data on the num-
ber of farms infected and the culling process were available [16]. On the other
hand, during the 2001 FMD epidemic in Uruguay, movement restrictions and a
mass vaccination campaign were put in place. The estimated cost of controlling
the Uruguayan epidemic was 13.6 million US$ of which 7.5 million were spent on
vaccine purchase [44].

3. Materials and Methods

An explicit discrete spatial deterministic model that incorporates specific interven-
tions is introduced (Figure 1a). The epidemiological unit is the farm. Farms are
classified as susceptible (S), latent (L), infectious and undetected (I), and detected
and isolated (J). Farms are aggregated at the level of counties. A susceptible farm
in county i that is in contact with the virus enters the latent (uninfectious and
asymptomatic) class (L) at the rate

∑n
j=1 βijIj . In other words, the rate of in-

fection is assumed to be proportional to the sum of the weighted prevalences of
infected farms from all counties j. The inter-patch connectivity matrix βij measure
the impact on county i from direct and indirect “contacts” between i−county and
the j−county. These “contacts” may be the result of animal relocation or move-
ment, from the sharing of milk routes (drivers as “mechanical” vectors or carriers),
shared veterinarians or overlapping visitors (buyers, salesmen of farm products, etc.
[44, 41]). It is assumed that latently infected farms “progress” towards the infec-
tious class after a mean time of 1/k days and that infectious farms are detected and
isolated from other farms at the per-capita rate α(t). That is, α(t) is the average
time required to detect and isolate an infected farm.

Matrix βij will depend on different factors including the spatial “closeness”
of counties and the traffic between counties in terms of animal movement, truck
movement, milk collection, human movement, etc. However, data on the traffic/flow
among counties was not available. Hence, we recurred to inter-county (Euclidean)
distance between counties as a proxy variable.

Inter-county (Euclidean) distance dependent transmission rate. Far away
farms are assumed to be less likely to share the same veterinarians or milk trucks or
visitors. Having no reliable information on the county specific frequency of move-
ment of potential “carriers.” It is assumed that the rate of transmission βij between
farms in counties i and j decays exponentially fast with the Euclidean distance of
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their respective county centroids. The elements of the “mixing” or “contact” ma-
trix βij [3] are therefore expressed as

(3.1) βij = β(t) e−qdi,j ,

where β(t) denotes the average transmission rate of infectious farms within each
county at time t, dij is the distance between the centroids of counties i and j (Figure
2), and the parameter q (1/km) which quantifies the extent of average local spread
(1/q can also be interpreted as the FMD mean transmission range). Small values
of q lead to widespread influence, whereas large values of q support the hypothesis
that local spread is the key. For simplicity, uniform mixing within each county is
assumed, that is, dii = 0.

Figure 1. (a) Schematic representation of the status progression
for farms in a given county used to model the epidemic, as ex-
plained in the text. (b) The initial growth rate for Region I, II and
III. (c) Region I, II and III comprise 3, 7 and 8 Uruguayan states,
respectively. The circle (Region I) denotes the site where the index
case was reported.
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Figure 2. (a) Map of Uruguay with department (in color: 1)
Artigas, 2) Salto, 3) Rivera, 4) Paysandu, 5) Tacuarembo, 6) Cerro
Largo, 7) Rio Negro, 8) Durazno, 9) Treinta y Tres, 10) Soriano,
11) Flores, 12) Florida, 13) Lavalleja, 14) Rocha, 15) Colonia, 16)
San Jose, 17) Canelones, 18) Maldonado) and county divisions
and (b) distribution of intercounty (Euclidean) distances which
were obtained using a geographic information system (GIS). The
centroid of each county was used to compute euclidean distances.

The model with movement restrictions (time-dependent transmission rate β(t))
and mass vaccination is the following (see compartment diagram in Figure 1a) :

(3.2)



Ṡi = −Si(t)
∑n

j=1 βij(t)Ij(t) − ν(t)Si(t)
V̇i = ν(t)Si(t) − Vi(t)

∑n
j=1 βij(t)Ij(t) − µ(t)Vi(t)

L̇i = (Si(t) + Vi(t))
∑n

j=1 βij(t)Ij(t) − k(t)Li(t)
İi = k(t)Li(t) − α(t)Ii(t)
J̇i = α(t)Ii(t)
Ṗi = µ(t)Vi(t)

The dot denotes time derivatives while Si, Li, Ii, and Ji denote the number of sus-
ceptible, latent, infectious, and removed/isolated farms in county i (i = 1, 2, ..., n).
The distribution of the number of farms per county is given in ref. [11]. The above
system falls within the class of metapopulation models that have been used exten-
sively to study ecological processes in heterogeneous patchy environments. In fact,
the spatially dependent transmission rates {βij} correspond to the metapopulation
patch connectivity index [23] once we re-interpret dij as a measure of the influence
of the landscape on migration. The elements of {dij} here are set of as “indices”
that capture the effects of local transmission factors such as wind direction and
animal heterogeneity within farms (dairy, beef, etc.). Here, the county connectivity
dij is approximated by the distance between counties. Susceptible farms in county
i (Si) are vaccinated at rate ν (Vi); vaccinated farms in Vi enter the protected class
Pi at rate µ; vaccinated farms in county i that have not yet reached protective
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levels (class P ) enter the latent (uninfectious and asymptomatic) class (L) at the
rate

∑n
j=1 βijIj . The total cumulative number of reported infected farms as a func-

tion of time is given by C(t) =
∑n

i=1 Ji(t) while the daily number of new reported
infected farms is given by ˙C(t), that is by α(t)

∑n
i=1 Ii(t).

The dependence of parameters β(t), α(t), ν(t), and µ(t) on time allow for the
possibility of implementing control measures at different times [10]. For simplicity,
these parameters are modelled as simple step functions

(3.3) β(t) =
{

β0 t < τm

β t ≥ τm

(3.4) α(t) =
{

α0 t < τv

α t ≥ τv

(3.5) ν(t) =
{

0 t < τv

ν t ≥ τv

(3.6) µ(t) =
{

0 t < τv

µ t ≥ τv

where τm = 5 is the epidemic day when movement restrictions were put in place
and τv = 13 is the time when mass vaccination started.

3.1. Model implementation. The 19 Uruguayan states are grouped into
three contiguous regions (Regions I, II and III) (Figure 1b,c). They experienced
significantly different prevalences [36]. Most cases accumulated in Region I where
the epidemic started [18]. Fewer cases occurred in the surrounding Region II, and
the least number of cases were reported in Region III [36]. Figure 2b shows the
distribution of all the intercounty distances. Using geo-referenced outbreak reports
obtained from public records of the Uruguayan Ministry of Livestock, Agriculture,
and Fisheries (MGAP) [32], the Pan-american Health Organization [35], and the
World Organization for Animal Health (OIE) [49] were used to construct a table
of the number of daily new reported infected farms during the first 79 days of
the epidemic (Figure 3). Each infected farm was associated geographically with a
region, state, and county. The focus of the epidemic was in Region I where the
epidemic started (1003 infected farms (57%)). This region includes the states of
Soriano, with 463 outbreaks (26%); Colonia, with 362 (21%); and Rio Negro, with
178 (10%).

3.2. Parameter estimation and model selection. The model parameters
Θ =(β(t), k(t), α(t), q(t), ν(t), µ(t)) and the initial number of exposed and infec-
tious farms (E(0) and I(0)) were estimated from the cumulative number of reported
farms (ti, yi), where ti denotes the ith reporting time (79 reporting days) and yi

is the cumulative number of reported farms by least-squares fitting to C(t,Θ) (the
cumulative number of reported farms for our ODE model with interventions (3.2))
in Region I (where the outbreak started and the majority of outbreaks occurred)
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[11]. This gives a system of 5 (equations per county) * 42 (counties in Region I)
= 210 differential equations. MATLAB (The MathWorks, Inc.) was used to carry
out the least-squares fitting procedure. Initial conditions were chosen within the
appropriate ranges (0 < β < 100, 1/5 < k < 1/3, 1/12 < α < 1/4, 0 < q < 10,
0 < ν < 10, 0 < µ < 10). Parameter optimization was carried out using the
Levenberg-Marquardt method with line-search [31]. This method is implemented
in the built-in routine lsqcurvefit.m in MATLAB (The MathWorks, Inc.).

The asymptotic variance-covariance AV(Θ̂) of the least-squares estimate for
the spatially explicit Model (3.2) was computed using a Brownian bridge error
structure to model the stochastic temporal dependence of the cumulative number
of outbreaks [11, 12]. The explicit formula used is

(3.7) AV(Θ̂) = σ2 B(Θ0) ∇ΘC(Θ0)T G ∇ΘC(Θ0) B(Θ0),

where B(Θ0) = [∇ΘC(Θ0)T ∇ΘC(Θ0)]−1.

An estimate of AV(Θ̂) is

(3.8) σ̂2 B̂(Θ̂) ∇ΘĈ(Θ̂)
T

G ∇ΘĈ(Θ̂) B̂(Θ̂),

where B̂(Θ̂) = [∇ΘĈ(Θ̂)
T ∇ΘĈ(Θ̂)]−1, σ̂2 =

∑
(yi − C(ti, Θ̂))2/(I1xn G Inx1)

and ∇ΘĈ are numerical derivatives of C(Θ̂). The error structure [15] was also
modelled by a Brownian bridge (G). Here G is an n x n matrix with entries
Gi,j = (1/n) min(i, j) − (ij)/n2 where n is the total number of observations. G
captures the higher variability in the cumulative number of outbreaks observed on
the middle course of the epidemic as well as the smaller variability observed at the
beginning and the end of the epidemic. Confidence intervals of 95% were computed
using the asymptotic variance of our parameter estimates (diagonal elements of
AV(Θ̂)). The parameter estimates and their corresponding uncertainty are given
in Table 1.

Table 1. Parameter definitions and estimates obtained from
least-squares fitting of spatial epidemic model (3.2) to the cumu-
lative number of infected farms in Region I [11].

Params. Definition Estim. SD
β0 Mean transm. rate within counties before mov. restrictions (1/days) 0.33 0.13
β Mean transm. rate within counties after mov. restrictions (1/days) 0.10 0.03

1/α0 Mean time to detect infected farms before mov. restrictions (days) 7.14 1.02
1/α Mean time to detect infected farms after mov. restrictions (days) 7.14 1.02
1/k Mean latent period (days) 3.57 0.64
q∗ Positive constant quantifying the extent of local spread (1/km) 1.03 0.10
1/ν Mean time to vaccination of susceptible farms (days) 4.00 1.44
1/µ Mean time to protection of vaccinated farms (days) 7.14 1.53

∗ Small values of q lead to widespread influence, while large values support local
spread. Great mobility and frequent interactions among farms would lead to small

values of q.
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Figure 3. (a) Daily and (b) cumulative number of reported in-
fected farms during the 2001 Foot and Mouth Disease epidemic in
Uruguay. The epidemic reached its maximum of 66 outbreaks on
day 33 (25 May 2001). By day 79 (10 July 2001) 1762 outbreaks
had been reported. Data have been obtained from public records
of the Uruguayan Ministry of Livestock, Agriculture, and Fisheries
(MGAP), the Pan-american Health Organization, and the World
Organization for Animal Health (OIE). The periodic dips in the
data are due to low reporting rates on the weekends.

4. Results

The magnitude of the actual epidemic size utilized in this study for comparative
purposes (observed cases) is shown in Table 2. Using a hypothetical “regular”
vaccine, it is shown that the earliest vaccination campaign (initiated at epidemic
day 5, the same day movement restrictions were imposed in the scenario under
analysis) resulted in a reduction of total epidemic size equal to 48.5% (or 486
fewer cases than expected) relative to the baseline Uruguayan scenario where the
actual time of start of post-outbreak vaccination was at epidemic day 12 with a
“regular” vaccine with an estimated time to reach protective antibody titers of
7.1 days [11]. A 59.4% reduction was achieved when a “high-potency” vaccine was
administered. Vaccinations initiated at epidemic days 8 and 12 were associated with
reductions in epidemic size of 31.9% (“regular vaccine) or 51.7% (“high-potency”
vaccine). In contrast, POV starting at day 15 yielded no reductions in epidemic
size (Table 2). Compared to the “regular” vaccine, the “high- potency” vaccine was
associated with additional reductions in epidemic size ranging between 21.2 and
29.1%. Therefore, in the scenario under analysis, the optimal date for initiating
a post-outbreak vaccination was between the 5th and the 8th epidemic day. We
found no interaction between the effect of the starting time of the mass vaccination
program and the type of vaccine used. The size of the epidemic grows linearly
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Table 2. Final epidemic size associated with POV initiated be-
tween epidemic days 5 and 15. Two vaccines are used: 1) a regular
vaccine (RV) and 2) a high-potency vaccine (HP). Mass vaccina-
tions (MV) are initiated at post-outbreak day (pod) 5, 8, 12, or
15.

actual MV RV HPV effect due to effect due to net effect
epidemic start size size RV HPV due to HPV
size at 79 pod (HPV/RV)
days

1003

5 517 407 -486 (−48.5%) -596 (−59.4%) -110 (−21.2%)
8 683 484 −380 (−31.90%) −519 (51.7%) −199 (−29.1%)
12 984 711 −19 (−1.9%) −292 (−29.1%) −273 (−27.7%)
15 1282 1004 +279 (+27.8%) +1 (+0.1%) −278 (−21.7%)

The number of cases observed in the actual epidemic (at 70 pod) in the region
under analysis (Region I) was 1003. Negative values indicate reduced epidemic

size, positive values indicate increased epidemic size.

with the starting time of the mass vaccination campaign. Visually, there is a small
quadratic effect but it is not statistically significant (Figure 4).
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Figure 4. The final epidemic size as a function of the time of the
start of the mass vaccination campaign and vaccine type. As can be
seen from this figure, there is a small quadratic effect between the
time of the start of the mass vaccination program (almost parallel
curves) and the type of vaccine, but it is not statistically significant.
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5. Discussion

Mathematical models have played an important role in the decision-making pro-
cess in the control of FMD epidemics and its economic consequences [21, 19, 29,
33, 8, 39, 34, 27, 5]. During the 2001 FMD epidemic in Great Britain, different
approaches were used including “moment closure” techniques [19] and stochastic
models [29, 33]. Here, we used a spatially explicit deterministic model that takes
into account the distance between counties in the transmission process (Figure 2),
farm density within counties, and information on the timing of intervention strate-
gies during the epidemic.

The evolution of epidemics is inherently a stochastic process. In large popula-
tions, the average epidemic described by a system of differential equations is close
to the actual realization of the epidemic. In smaller populations, these differential
equations models continue to describe the evolution of the average epidemic, while
the actual realization can depart from its average. Our model attempts to describe
simultaneously the average behavior of the epidemic within each of the 42 counties.
Discrepancies between the actual epidemic data and the predicted average increase
the residual sums of squares leading to larger standard deviations for the estimated
parameters. This motivates the importance of attaching standard deviations to our
estimates in our analysis.

The level of local and long-distance farm “interactions” naturally depend on
farm “type.” Data on farm heterogeneity (dairy, beef, etc) or farm composition
(cattle, pigs, sheep) [6, 44] were not explicitly incorporated here but could be con-
sidered should appropriate data were to become available. Generally speaking, the
estimates of the transmission rates (as previously defined) should be interpreted as
mean transmission rates characteristic of the 2001 FMD epidemic in Uruguay. The
explicit nature of the data and model assumptions suggest that these estimates are
unlikely to be of value elsewhere. However, the modelling and estimation approach
should be of use in similar situations.

In the scenario under analysis the “best” vaccination policy was the one that
began at epidemic day 5 (time estimated to correspond to the second replication
cycle, or epidemic days 4-6), and applied the high-potency vaccine. Because at
least 3 additional days are deemed necessary to induce protective levels of antibod-
ies against FMD virus (FMDV), the effects induced effects by this policy occurred
during or after the third replication cycle of FMDV (∼ epidemic days 9-12). That
policy reduced the final epidemic size from 1003 cases to 407 cases (Table 2).
The second “best” policy was the one that induced effects during or after the fourth
FMDV replication cycle ( 9th epidemic day), which “saved” 51.7% of all cases (when
a “high-potency” vaccine is used). The third (and last) policy inducing case reduc-
tion at levels approaching acceptability was the one generating protective antibodies
after the fifth FMDV replication cycle (after the 15th epidemic day). It reduced
the total number of cases by 29.1%. In contrast, vaccinations inducing protective
antibody titers at or after the 18th epidemic day (after the sixth FMDV replication
cycle) were not associated with reductions in epidemic size (Table 2).

In order to induce measurable reductions in the total epidemic size (in diseases
where the time required to induce protective antibody titers is not greater than the
replication cycle of the infective agent), POV has to be initiated not later than the
time estimated to correspond to the fourth replication cycle of the infective agent.
Even under the assumption of 100% efficacy (under experimental conditions) and
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also under the assumption of 100% spatial coverage (no region with susceptible
animals is left unvaccinated), post-outbreak vaccinations have a very narrow time
window within which some significant reduction of epidemic size may occur (be-
tween the second and the fifth replication cycle of the infective agent). However,
when regular vaccines are used, longer periods of time may be needed to induce
protective titers of specific antibodies (i.e., at least equivalent to an additional [vi-
ral] replication cycle).

The brief timeframe available for implementing effective post-outbreak vacci-
nations, observed in this study, is compatible with previous reports. For example,
Woolhouse et al. [46] has reported that post-outbreak (and even prophylactic)
vaccinations have failed to prevent or have not been able to stop FMD epidemics
in Saudi Arabia and Argentina. The basic reason is the fact that the combination
of multiple replication cycles with even moderate reproductive numbers (the ratio
of secondary cases per primary cases or R0) result in very high numbers of infected
premises within a brief time interval. For instance, an index case associated with a
R0 = 4 (e.g., 4 new cases are induced per primary case, in each replication cycle)
results in 45 (256 cases) after the virus has replicated 5 times. Two-digit R0’s are
rather common findings in early phases of FMD epidemics [46].

Because of these limitations, we concluded that post-outbreak vaccinations are
unlikely to result in significant reductions of epidemic size. It is suggested that
this approach, here evaluated in the context of FMD epidemics, may be adapted
to other diseases (adjusting for the replication cycle of the specific infective agent)
and can help decide whether the benefits involved in post-outbreak vaccinations
(epidemic size reduction) outweigh their costs.

References

[1] Alexandersen, S., Zhang, Z., Donaldson, A.I., Garland, A.J., 2003. The pathogenesis and
diagnosis of foot-and-mouth disease. J. Comp. Pathol. 129: 1-36.

[2] Armstrong, R.M., Mathew, E.S., 2001. Predicting herd protection against foot-and-mouth
disease by testing individual and bulk milk samples. Journal of Virological Methods 97, 87-99.

[3] Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans, Oxford University Press,
Oxford.

[4] Anon, 1969. Report of the Committee of Inquiry on Foot-and-Mouth Disease, 1968. Part 1
and 2. Her Majesty’s Stationery Office, London, 135.

[5] Bates, T.W., Thurmond, M.C., and Carpenter, T.E., 2003. Results of epidemic simulation
modeling to evaluate strategies to control an outbreak of foot-and-mouth disease. Am J. Vet.
Res. 64, 205-210.

[6] Bates, T.W., Thurmond, M.C., Carpenter, T.E., 2001. Direct and indirect contact rates
among beef, dairy goat, sheep, and swine herds in three California counties, with reference
to control of potential foot-and-mouth disease transmission. Am J. Vet. Res. 62, 1121-1129.

[7] Brauer, F., Castillo-Chavez, C., 2001. Mathematical Models in Population Biology and Epi-
demiology, Springer-Verlag, New York.

[8] Brentsen, P.B.M., Dijkuizen, A.A., Osk, A.J., 1992. A dynamics model for cost-benefit anal-
ysis of foot-and-mouth disease control strategies. Prev. Vet. Med. 12, 229-243.

[9] Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C., 2003. Scaling laws for the move-
ment of people between locations in a large city. Physical Review E 68, 066102.

[10] Chowell, G., Hengartner, N.W., Castillo-Chavez, C., Fenimore, P.W., Hyman, J.M., 2004.
The basic reproductive number of Ebola and the effects of public health measures: the cases
of Congo and Uganda. Journal of Theoretical Biology 229, 119-126.

[11] Chowell, G., Rivas, A.L., Hengartner, N.W., Hyman, J.M., Castillo-Chavez, C. The Role of
Spatial Mixing in the Spread of Foot-and-Mouth Disease. Prev. Vet. Med. In press.



CRITICAL RESPONSE TO POST-OUTBREAK VACCINATION AGAINST FOOT... 13

[12] Chowell, G., Shim, E., Brauer, F., Dı́az-Dueñas, P., Hyman, J.M., Castillo-Chavez, C. Mod-
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